Analyse

Künstliche Intelligenz – Ist der Deep-Learning-Boom bald am Ende?

Seite 2 / 2

Der wichtigste Trend, den das Magazin ermittelt hat, ist für Kenner der KI-Forschung keine Überraschung: Die statistische Methode des Machine Learnings hat sich ab Anfang der 2000er klar gegen wissensbasierte, formal-logische KI-Systeme durchgesetzt. Begriffe wie „Logik“ oder „Regel“ machten Platz für Begriffe wie „Daten“, „Netzwerk“ und „Performance.“ Ab 2012 setzte sich dann vor allem das Deep Learning unter den Machine-Learning-Methoden durch, so das MIT-Magazin. Die Begürndung für diesen Trend: die großen Erfolge bei der Bilderkennung.

Deep Learning: Reinforcement Learning liegt im Trend

Deep Learning lässt sich grundsätzlich mit drei Lernmethoden kombinieren: Supervised Learning (überwachtes Lernen), Unsupervised Learning (nicht-überwachtes Lernen) und Reinforcement Learning. Supervised Learning wird dabei dem Bericht zufolge am häufigsten eingesetzt und hat die meisten praktischen KI-Anwendungen hervorgebracht – zuletzt ist aber vor allem beim Reinforcement Learning ein starkes Wachstum zu beobachten.

Die theoretischen Grundlagen für Deep Learning mittels künstlicher neuronaler Netze wurden bereits in den 1980er-Jahren gelegt – doch die Explosion der Datenmengen und die immer schnelleren Prozessoren haben der Technologie in den vergangenen Jahren endgültig zum Durchbruch verholfen. Viele Grundlagen der KI-Forschung wurden sogar schon in den 1950er-Jahren geschaffen und zwischen den heutigen Fortschritten der KI und den Anfängen der Technologie liegen mindestens zwei sogenannte „KI-Winter“, in denen die hohen Erwartungen zunächst enttäuscht wurden. Nach einer ersten Welle der Enttäuschung strich beispielsweise die britische Regierung 1973 sämtliche Gelder für die KI-Forschung.

Wann kommt der nächste KI-Winter?

Doch was bringt die Zukunft? Es ist gut möglich, dass auf den Hype rund um Deep Learning der nächste KI-Winter folgt – eine Phase, in der es nach hohen Erwartungen wieder deutlich langsamer vorangeht. Kürzlich erschien beispielsweise ein viel diskutiertes Paper über die Grenzen von Deep Learning. Der australische Informatiker und Kognitionswissenschaftler Rodney A. Brooks geht davon aus, dass wir spätestens 2020 die Schlagzeile „Die Ära des Deep Learnigs ist vorbei“ lesen werden.

„Neuronale Netzwerke sind tief im technischen Sinne, weil sie mehrere Schichten von Nodes haben, nicht weil sie ein tiefes Verständnis von Problemen entwickeln“, schreibt auch der Unternehmensberater und Entwickler Thomas Nield bei Towards Data Science. Diese verschiedenen Ebenen machen aus seiner Sicht die Technologie schwer zu verstehen und Fortschritte ab einem bestimmten Punkt der Entwicklung zunehmend schwieriger. Angewandt auf spezifische Probleme wie dem unter Informatikern bekannten Problem des Handlungsreisenden würde Deep-Learning-Software nur in wenigen Ausnahmefällen ein besseres Ergebnis erzielen als klassische, spezifische Algorithmen.

Lass wir uns von Deep-Learning-Erfolgen blenden?

Der Informatiker Luke Hewitt vom MIT spricht sogar von einer „unangemessenen Reputation neuronaler Netzwerke“. Es sei ein klassischer Fehler der KI-Forschung, sich zu stark von Erfolgen von Computern bei spezifischen Aufgaben blenden zu lassen. So sei schon seit mehr als 20 Jahren jeder Schachcomputer in der Lage, selbst die besten menschlichen Spieler zu schlagen. KI ist dennoch immer noch Galaxien von der generellen menschlichen Intelligenz entfernt.

Auch Pedro Domingos, Informatikprofessor an der University of Washington und Autor des Buches „The Master Algorithm“ erwartet einen neuen KI-Winter nach dem Deep-Learning-Hype. Doch was kommt danach? „Wenn Sie diese Frage beantworten, will ich ein Patent auf die Antwort“, zitiert MIT Technology Review Domingos.

Mit genau dieser Frage beschäftigt sich dieser t3n-Artikel:

Weitere Artikel zum Thema KI:

Bitte beachte unsere Community-Richtlinien

Wir freuen uns über kontroverse Diskussionen, die gerne auch mal hitzig geführt werden dürfen. Beleidigende, grob anstößige, rassistische und strafrechtlich relevante Äußerungen und Beiträge tolerieren wir nicht. Bitte achte darauf, dass du keine Texte veröffentlichst, für die du keine ausdrückliche Erlaubnis des Urhebers hast. Ebenfalls nicht erlaubt ist der Missbrauch der Webangebote unter t3n.de als Werbeplattform. Die Nennung von Produktnamen, Herstellern, Dienstleistern und Websites ist nur dann zulässig, wenn damit nicht vorrangig der Zweck der Werbung verfolgt wird. Wir behalten uns vor, Beiträge, die diese Regeln verletzen, zu löschen und Accounts zeitweilig oder auf Dauer zu sperren.

Trotz all dieser notwendigen Regeln: Diskutiere kontrovers, sage anderen deine Meinung, trage mit weiterführenden Informationen zum Wissensaustausch bei, aber bleibe dabei fair und respektiere die Meinung anderer. Wir wünschen Dir viel Spaß mit den Webangeboten von t3n und freuen uns auf spannende Beiträge.

Dein t3n-Team

3 Kommentare
Gigi
Gigi

Interessant und hilfreich, auf die ganzen Jubelmeldungen auch mal realistisch-kritische Berichte zu lesen. Da fühl ich mich danach immer etwas besser :).

Antworten
Titus von Unhold
Titus von Unhold

Die Mitarbeiter sollten sich dringend ein Beispiel an ihrem Chef nehemen.

Antworten
Robert W.
Robert W.

da hat sich ein kleiner Fehler eingeschlichen:

„Die >>Begürndung<< für diesen Trend: die großen Erfolge bei der Bilderkennung."

Antworten

Melde dich mit deinem t3n Account an oder fülle die unteren Felder aus.

Bitte schalte deinen Adblocker für t3n.de aus!

Hey du! Schön, dass du hier bist. 😊

Bitte schalte deinen Adblocker für t3n.de aus, um diesen Artikel zu lesen.

Wir sind ein unabhängiger Publisher mit einem Team bestehend aus 65 fantastischen Menschen, aber ohne riesigen Konzern im Rücken. Banner und ähnliche Werbemittel sind für unsere Finanzierung sehr wichtig.

Danke für deine Unterstützung.

Digitales High Five,
Stephan Dörner (Chefredakteur t3n.de) & das gesamte t3n-Team

Anleitung zur Deaktivierung