News

Machine Learning – Facebooks KI-Chef sucht neue Sprache für Deep Learning

Facebooks KI-Chef Yann Lecun sucht nach neuen Ansätzen für Deep Learning. (Foto: Facebook)

Der KI-Chef von Facebook möchte die aktuelle Herangehensweise an Deep-Learning-Probleme gern völlig neu denken. Dazu gehört eine Programmiersprache, die effizienter ist als Python, ebenso wie neue Hardware, die nicht nur Matrizen multipliziert.

Der Auftakt zur diesjährigen International Solid-State Circuits Conference (ISSCC) ist ein historischer Abriss von Facebooks KI-Chef Yann Lecun (PDF), der zusätzlich zu einem Rückblick auf Jahrzehnte von Forschungsarbeit auch über die Zukunft von Deep-Learning-Problemen nachdenkt. Dabei kommt der Forscher zu dem Schluss, dass sich einiges an der bisherigen Vorgehensweise und den Ansätzen zur algorithmischen Umsetzung ändern muss.

Dazu gehöre etwa, dass zum Deep Learning eine effizientere Programmiersprache nötig sein könnte, wie Venturebeat berichtet. Bisher werden die meisten Frameworks in diesem Bereich wie zum Beispiel Googles Tensorflow oder Facebooks Pytorch in Python geschrieben. Laut Lecun suchen derzeit aber Google, Facebook und auch andere nach einer kompilierten Sprache, mit der Deep-Learning-Algorithmen effizienter umgesetzt werden können.

Lecun selbst weist aber auch darauf hin, dass dies ein sehr schwierig umzusetzender Schritt sein könnte. Immerhin sei überhaupt nicht klar, ob die Community aus Forschern und Entwicklern diesem Weg überhaupt folgen würde, da „die Leute einfach Python benutzen möchten“. Einer Untersuchung von Github zufolge sind Python und bestimmte Python-Pakete derzeit die beliebtesten Werkzeuge für Deep Learning.

Neue Hardware braucht die Community

Lecun ist sich darüber hinaus auch sicher, dass der Bedarf für spezialisierte Hardware, die Deep-Learning-Aufgaben übernimmt, künftig weiter ansteigen wird, wie es im KI-Blog von Facebook heißt. Allerdings verändern sich auch die Algorithmen, die für Deep Learning genutzt werden, teilweise grundsätzlich im Vergleich zu bisherigen Ansätzen.

„Möglicherweise müssen wir deshalb die Art und Weise neu erfinden, wie wir Arithmetik in Schaltkreisen durchführen“, sagt Lecun zu diesem Problem. Derzeit seien Unternehmen größtenteils abhängig von dem Zulieferer Nvidia zum Beschleunigen der Algorithmen oder darauf angewiesen, eigene Hardware zu gestalten wie etwa Google mit seinen TPU. Dem Magazin ZDnet bestätigte Lecun außerdem, dass auch Facebook intern an eigener Hardware zum Beschleunigen der Berechnungen arbeite, auch wenn er keine Details dazu nennen wollte.

Derzeit werden die Deep-Learning-Aufgaben und -Berechnungen meist auf einfache Matrix-Multiplikationen zurückgeführt, die sich etwa in GPU sehr schnell ausführen lassen. Mit den TPU von Google oder den Tensor-Einheiten von Nvidias Modulen für autonome Fahrzeuge wird davon auch massiv Gebrauch gemacht.

Mit Bezug auf dieses Vorgehen sagte Lecun: „Ich denke nicht, dass das die Antwort ist“. Was dann aber als Ersatz dienen könnte, weiß auch der Forscher selbst nicht und lagert die Umsetzung einfach aus. „Ich denke, dass die echten Hardware-Genies neue Wege finden müssen, um diese Dinge zu tun“.

Autor des Artikels ist Sebastian Grüner.

Bitte beachte unsere Community-Richtlinien

Schreib den ersten Kommentar!

Melde dich mit deinem t3n Account an oder fülle die unteren Felder aus.

Hey du! Schön, dass du hier bist. 😊

Bitte schalte deinen Adblocker für t3n.de aus, um diesen Artikel zu lesen.

Wir sind ein unabhängiger Publisher mit einem Team bestehend aus 65 fantastischen Menschen, aber ohne riesigen Konzern im Rücken. Banner und ähnliche Werbemittel sind für unsere Finanzierung sehr wichtig.

Danke für deine Unterstützung.

Digitales High Five,
Stephan Dörner (Chefredakteur t3n.de) & das gesamte t3n-Team

Anleitung zur Deaktivierung